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Abstract. A theory for a classical D = 2 + 1 string with a distributed spinor field is suggested. 
This field is defined by real Majorana spinors which are spinors both in  initial three- 
dimensional spacetime and in corresponding touching planes. I t  is shown that the dynamics 
of that object in terms of Poisson brackets is defined by the pair of algebras of i s o ( l , 2 ) 3  
[ f - ' ,  i])G?C, type. A one-to-one correspondence between this model and  the conformal- 
invariant model of two-dimensional scalar and spinor fields with non-tribial interaction 
(Thirring x Liouville model)  is determined. 

1. Introduction 

As i t  now seems, the algebraic structure of hadronic physics is connected with some 
type of affine Lie algebras-current algebras. These objects appear in various models 
of strongly interacting particles (see for example De Alfaro et a1 1973). It is widely 
known that the quantum string theory is not an exception here (Dolan 1984). As 
regards the classical string, a Virasoro algebra, and not a current algebra, is generally 
considered the foundation or" Poisson bracket structure for the theory. In  this paper 
we want to show another example, where the Hamiltonian structure of the classical 
D = 2 + 1 string with spinor degrees offreedom is defined by the pair of current algebras. 
The latter contain non-zero central charges. Virasoro commutators (in the sense of 
Lie operators) are present in the theory, but it is the consequence of current commutators 
which seem to be most fundamental here. 

The object of our investigation-the spinor string-is described by the pair of 
coordinates ( X , ,  V;), p = 0, 1,2,  a, j = 1 ,2 ,  where X ,  = X , ( [ " ,  t i ) ,  the coordinates of 
the string in three-dimensional spacetime Mi,? with metric ( g g l . )  =diag ( l ,  -1, - I ) ,  
and qy = VP((O, [ I ) ,  the components of spinor field, defined on the world surface 
{ X , } .  Two types of indexes here-a and j-mean that (complex in general, but not 
Grassmann!) numbers Yp define both spinors in initial space MI.? (index a )  and  
spinors in two-dimensional planes which touch the world surface { X , }  at the point 
X, ( t ' ,  6'). Sometimes we shall drop a certain index: the notation Yf', a = 1,2 ,  means 
the pair of two-dimensional spinors and V,, j = 1 , 2 ,  means the pair of three-dimensional 
spinors. 

The action functional for our string is analogous to superstring theory (Schwarz 
1982). We use an  orthonormal gauge in this work: 

(a*x,)'= 0 (1)  
where 

(* = 6 '  i 6''. a, = ala&, _ _ _  
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In this gauge the action functional is 

d t o  d['{a+x,a"'' 

where yo  = a,, y' = ia, (Pauli matrices), W' = qVlt0yo, a, = a/[,, &,b is the invariant 
spinor for for some three-dimensional spinors cp, v the function E , ~ ( P * '  v b  is scalar. 

In this paper we shall consider the closed string: 

X,(t0, 0 )  = X,(tO, 

Y a ( t 0 ,  0) = qa(t0,  7 1 )  

q " ( [ O ,  0 )  = -*"(to, 7 T )  

For spinor coordinates the following conditions take place: either 

(3a) 

or 

( 3 b )  

by analogy with the Ramon and Neveu-Schwarz spinning string, respectively. 
The action (2)  leads to the following equations of motion: 

J+J-x,  = 0 p =o,  1,2 (4a 1 
i y ' a J q a  = 0 a = l , 2 .  (46) 

For convenience note 97 = q:, Vi = 9:. It is obvious that this notation is motivated 
by equations a*q: = 0, which are equivalent to (4b). 

We suppose that the three-dimensional spinors 9= are Majorana spinors. Because 
the pure imaginary representation ro = a2, r' = ial , r2 = ia, for Dirac matrices r" will 
be used, the numbers 4," are real numbers (Sherck 1979). Next, define the pair of 
light-like vectors: 

J*' = F;$*PY+ q+ =*++To. 

With the help of the quantities J+@ we formulate additional conditions, the fulfilment 
of which is also important. These conditions are 

a,X,J,p + 0. ( 5 )  

In our point of view the model outlined above can be considered as the generalisation 
of a standard Nambu-Goto ( N G )  string in the light-like gauge. Indeed, take 

qY([+) = qu"([-) = constant. 

This supposition means that *JFP = n" is the constant light-like vector and we have 
additional conditions which are standard for NG theory (Mandelstam 1974, Barbashov 
and Nesterenko 1987): 

a,X,n' # 0. (6) 

It should be emphasised here that condition (S), unlike (6), can be considered as the 
restriction only for spinors 9* but not for coordinates X,. 

The purpose of this work is, first, to investigate the geometry of the object outlined 
above and to deduce the corresponding system of non-linear differential equations 
and, second, to study string Hamiltonian dynamics as Hamiltonian dynamics of the 
solutions of these equations. This method is not new. The standard geometrical 
description of an NG string ( D  = 2 + 1)  in terms of the two-dimensional Liouville 
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equations 0 (o + exp cp = 0 is well known (Barbashov and  Nesterenko 1980). As demon- 
strated above, our approach generalises the standard one and  takes into account spinor 
degrees of freedom of every string point. The suggested theory leads to the current 
algebra. The appearance of this fundamental object on a classical level seems to be 
interesting. 

2. Geometrical description 

Now let us consider real functions X @  = X w (  to, 5') and = T,"(to, 5') which satisfy 
(4) and ( 5 ) .  The equations of motion and additional conditions are invariant under 
the two-dimensional conformal group Gz , i.e. the group of transformations 

5*-, 'i* =f*(5*) (7) 
where f,(t+) are arbitrary regular functions with f: f 0. To fix the parametrisation 
(to, 5') conformal freedom (7) has to be destroyed. Let us d o  it, demanding 

a,x,J," = $ s T 2  s = constant. (8) 
Note for convenience x ~ ' "  = S*'d,Xw, y,'" s*'J*'" and introduce z , ~  = 2 E w Y A y * j + A .  

We have ( ~ , ) ' = ( y , ) ~ = o  and, because of (8), (z,)'= -1. This means that 'plus' 
vectors (x+, y + ,  z+) and 'minus' vectors give the pair of basis in initial spacetime 
Let B ,  be matrices of its coordinates in some constant basis q, ( q,q, = g,,, a, p = 

0,192) 
x*o X*I x:2 

B * =  * y*o i,. :I: ::j- 
Denote by X ( t o ,  5') the matrix, which connects B- and B+ : 

Ut- )  = wto, t ' ) B + ( 5 + ) .  (9) 

K:l Kl2KII 

Because of the local isomorphism SL(2, R )  and the connected components of SO(2,l)  
we have 

1 mo, 5') = ( K:, K'2 K;, K2lK22 
2K1zKzz 2KiiK21 KiiKzr+Ki2K21 

where K,, = &(to, 6 ' )  are the elements of the real 2 x 2 matrix K with the unit 
determinant. Next, the equality (9) gives 

a-( X-'a+x) = 0. 

a-( K-'a+ K ) = 0. 

Hence, unambiguously, 

(10) 
Now we write the Gauss decomposition for the matrix K as the element SL(2, I?) 
(Barut and Raczka 1977): 

K = AI '4A+ (11) 
where 
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It is well known that between the matrices K E SL(2, R )  and the set of numbers 
(cp, a + ,  a - )  a one-to-one correspondence exists, except for some group points for which 

In our case this equality sets a correspondence between singular elements of SL(2, R )  
and points of singularities of functions cp, a ,  in the (t", 6 ' )  plane. 

_ -  $+d-cp+(a -a+) (a+a- )  exp(-cp) = o (136) 

d=[a la ,  exp(-cp)] = 0. (13b) 

Because of (10) and  (11) for regular points we ha \e  

Denote a,a, exp(-cp) pT and rewrite system (13) in the form of 

-$a+a-cp + p+p- exp( cp)  = 0 (140)  

a,p= = 0 (14b) 

d,a, = pT exp(cp). (14c) 

Equations (14) are the Lagrange-Euler equations for action: 

where 

yip((', 5') =a(a+cp)(~-cp)+p,p- exp(cF)-p+a-cu+-p-a,a-. 

The action (15) was first used in the work of Pogrebkov and Talalov (1987) for 
constructing a two-dimensional field theory model. This model describes a non-trivial 
interaction of a scalar field cp and spinor field 4 = (Z,, 4-)T with components 

Z* = ( p = ) '  exp(*4ia,). 

Interaction of the fields is defined here by means of part of the Lagrangian: 

P+P- exp(cp) - ( S Y " ~ ) ~  exp(cp) 

which unites the widely known Thirring and Liouville two-dimensional field theories. 
It was shown there that the model possesses conformal-invariance properties. 

Now let us discuss the system (14) from the view point of classical differential 
geometry of the world surface {X ' } .  According to the definition of the 3Y matrix and  
field cp(to, 5') we have 

a+x,a-xp = - $  exp(-9).  (16) 

5') defines the first quadratic form of the world This means that the function 
surface { X p } :  

d s 2 =  exp[-cp(to, 5')1[(d50)2- (d5,)21. 

Then we write for the coefficient of the first and second (b,,) quadratic forms the 
Peterson-Codazzi and Gauss equation (see, for example, Dubrovin er 01 (1979) and 
Barbashov and Nesterenro (1987)): 
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where R I z l z  is the non-trivial component of the Riemann tensor for the surface { X , } .  
Because of (14) we have 

( b l l  * biz)'= 4(constant)*'p:. (18) 
For coordinates X ,  this means (Barbashov and  Nesterenko 1987) 

(a:X,)'= - f ( b , ,  * biz)> = -(constant)*'pi .  

The following point has to be stressed here. Assume that the second quadratic 
form b,, of the surface satisfies the condition 

b l l  f b I 2  f 0. 

This means that, in accordance with conformal freedom (7),  b , ,  f 612 = constant can 
be chosen, and we have a standard geometrical description of the string in terms of 
one function $(to, 6') which gives the Liouville equation. I f  equalities b , ,  f b I 2  = 0 
are permitted, there is no such conformal equivalence. In  our case, functions pi((,) 
are dynamical variables; they can take zero values on some intervals, probably. 

3. Cauchy problem 

Our next purpose is to express the solutions of equations (4) through Cauchy data for 
the system (14).  First we should say how the Cauchy task for (14) was solved in 
Pogrebkov and Talalov (1987) and Talalov (1987). In  those works the non-periodic 
case -CO 5' s CO was considered. According to (12), the Cauchy initial data for (14), 
p([) = cp(0, [), x ( [ )  = dcp(0, [ ) / a [ ' ,  a, ([ )  = a,(O, [), can possess, by supposition, a 
finite number of singularities-a logarithmic type for CO(() and a pole type for r ( [ )  
and a , ( ( ) .  The initial data p , ( o  = p , ( O ,  5) are always regular. Define matrices 

F = ( t 0 ,  5') = ( e n P ( W 4 )  exp(kp/4) )  0 
0 

with cp = cp([', [ I ) ,  pI = p , ( [ , )  and matrices 

Q*( l0 ,  5') = A * [ F * [ U ( t " ,  5')11 
where the notation C [ B ]  for gauge transformation matrix B with the help of matrix 
C is used: C [ B ]  = C- 'BC - (ac- ' / ag ' )c .  The importance of the traceless matrices 
Q=([",  6') is determined by the following qualities. First, the elements of (Ii are 
regular functions even in singular for the cp, r,  a ,  case and, second, the equations for 
Q * ( ~ O ,  5') are quite simple: 

Equalities (19) lead to Q1(6', 6') = Q,(O, e*), where Q,(O, (-1 = Q*([+)  are matrices, 
which are constructed by means of the Cauchy task initial data only. The Cauchy task 
is solved for (14) as follows. Obviously, the reconstruction p * ( [ " ,  5') = pi(6*) is trivial. 
Let Ti([) be matrices of solutions of the auxiliary linear regular 2 x 2 systems: 

(20) m 5 )  + Qi(5) T*(O = 0. 
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Moreover it is supposed that 

TA5)  = I for 5 = 5. (21) 

In  Talalov (1987) 5 = +a was chosen, but in our periodic case for Q * ( t )  we have to 
put 5~ [0, T]; we can now put 5 = 0, for example. 

It is stated that the matrix K (  to, 5') (see (1 1 )) is 

K ( t O ,  5') = T - ( t - )  K'(t+). (22) 

T,+ f,= T,B (23) 

The condition (21) destroys three-parameter freedom in the choice of matrices T,  : 

where B = constant, det B = 1. 
To express the coordinates X, ,  p = 0, 1,2, through Cauchy data cp, 7, a,, p* it is 

convenient to take a constant basis in in the form of (a, p, q2) ,  where a = 

f ( q l  - q0), p = f ( q l  + q0). According to the results of Omnes (1979) and Barbashov 
and Nesterenko (1987) for derivatives of the local minimal world surface in orthonormal 
gauge and for its first quadratic form coefficients we have 

x* = f (p*/f*)[a - (f*)' p *f* 9 2 1  (24) 

exp(-cp) = (P+P-/f+f-) ' [f++f-I'. (25) 

Functions f+ =f*(&) are arbitrary here. In our case exp(-q) = K : ,  and because of 
(22) we have (to an accuracy of transformation (23)) 

f+= - ( t : t l t ; I )  f: = p+/(f;l)2 

f- = t l z / t l l  f!o=pP-/(t;l)2 

where ( t c )  = (T+),,. 
The resulting formulae are 

These expressions restore the derivatives of the world surface { X , }  through the 
Cauchy data of system (14). Direct verification shows that transformations (23) induce 
Lorentz transformations of the coordinates X , .  Choose as the real Majorana spinors 
P+ and 9- 

Because matrices ( B )  and ( - B )  in ( 2 3 )  give the same transformation of the vectors 
X , ,  the transformations (23) are spinor here 

Y* -+ = B - ' q * .  

Next, we have 
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The additional conditions (8) can be verified directly. In accordance with periodicity 
Xu([') and condition (3) we have to demand 

M + = M - = i I  (286) 

where M ,  are the monodromy matrices for system (20): 

T i ( ( + r ) =  T * ( ( ) M , .  

Thus, we have reconstructed the initial object ( X , ,  9:) through Cauchy data for 
system (14). The model is quite 'supersymmetric': we can introduce a string Y, with 
derivatives of the world surface: 

a, Y' = J , ,  

and spinors v, with the components 

so that 

Due to the demonstrated symmetry 

( x w , 9 3 - ( v : ,  Y') (29a) 

representation (28a) for vectors y ,  , and, consequently, representation (27) for spinors 
9, through the initial Cauchy data q, 7, a,, p + ,  is single valued to an accuracy of 
transformation (23). 

To fix the correspondence completely, we have to add some condtions on the initial 
variables X ,  and 92 at the point ( O = O ,  t ' = O :  

a*X(O, 0) = - + s F ' ( 1 7 '  * 70) 

It is clear that conditions (296) can be varied. 
Next, we have to demand that the 1-form dX, and elements of the matrix K ( to, & I ) ,  

which are quite geometrical, be invariant as regards Lorentz transformations of the 
(to, 5') plane. This means that transformations 

- ti+ ti = A = ' ( *  A > O  

lead to (see (8)  and (20)) 

s + i = A s  

T,+ .i.f(e?*) = T,(A*'5,) .  

These formulae correspond to the assumption that objects 4' = (9:, 9:)" are two- 
dimensional spinors for every three-dimensional spinor index. 
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4. Poisson bracket structure 

We now describe Hamiltonian dynamics of the object considered. As usual, we assume 
that to is the ‘time’ parameter, which defines the evolution of system. A suitable 
Poisson bracket structure is the first of what is necessary to fulfil our intentions. 
Formally, let 

and  the rest of the possible brackets are equal to zero. In the regular case for initial 
data, equalities (30) can be realised by means of the widely known definition of Poisson 
bracket structure: 

But, in accordance with the procedure of Gauss decomposition ( l l ) ,  singular 
solutions of system (14) must be considered as well. Formulae (30) in this case are 
ambiguous, because ‘little variations’ 6 ( ~ (  ,$), 6 ~ (  €), 6a,( 5) are not well defined values. 

{ Q A O  Q Q*( 77 ) I  = 2R*S’(€  - 77 1 + [R* 1 1 2 0  Q*( 77 1 - Q * ( € )  0 1216( 5 - 77 1 ( 3 1 ~ )  

{ Q+(O Q Q-( 77 11 = 0 (316) 

where R ,  = + & ( 2 P -  14), P is the rearrangement matrix: ( P ( A O B )  = ( B O A ) P ,  the 
square brackets denote the commutator of correspondent matrices, and  0 and Q are 
standard tensor notation. Note that brackets (31) are a pair of second Hamiltonian 
structures for a non-linear Shrodinger equation (Magri 1978, Kulish and Rayman 
1978). We emphasise that elements of the matrices Q* are always regular functions, 
even in singular for the ( ~ ( 0 ,  ~ ( 0 ,  a,(() cases. Taking this into account, we postulate 
brackets (31) as fundamental ones in the string model studied. The detailed construc- 
tion of the Poisson structure of system (14) with the help of (31) was made in Talalov 
(1987). In this work regular canonical variables of action-angle type and canonical 
(Noether) energy-momentum tensors were constructed. The method was first suggested 
in Jorjadze er a1 (1986) for investigation of the singular case of Liouville’s equation 
solutions. 

Beginning with (30) we have 

For energy H we have 

H=!{:dC(s++O-) 2 (32) 

where 

e, = 4tr[ QJ‘. 

Q*(O= T a u  r$L* 

{ j * w ( o , T ” ( 7 7 ) l  = * 2 g , J ’ ( , $ -  7 7 ) + E p v * j i h ( € ) S ( € -  77) 

Next, make the decompositions 
1 . .*w 

Then, due to (31), we have 

(330 1 
{ j + $ L ( O , j - v ( q ) l  =O. (336) 
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Thus we describe the initial object-closed classical D = 2 + 1  string with the 
distributed spinor field-in terms of pair currentsj’,( e ) ,  which are periodic and regular 
functions. The ‘conservation laws’ 

d z j Z , ( e o ,  t l ) = O  

take place for these currents. 
Due to conditions (29a),  the correspondence 

( X p , ~ z ‘ ) - ( j 7 p , j - z  1 
is a one-to-one correspondence. 

Equations ( 2 8 a )  define some constraints in the phase space of the string. As follows 
from the results of Talalov (1987), the consequence of ( 3 1 )  for the non-periodic case 
is 

{M,? Q * ( S ) >  = 0. 

That is why we d o  not expect any trouble from conditions ( 2 8 a ) .  Detailed discussions 
of similar problems can be found in Jorjadze et a1 (1986). 

Due to periodicity X , ( [ ’ )  another constraint exists in our model. For zero modes 
of the Fourier decomposition of the functions X L ( S 1 )  we have 

a:=- T ’ j : d € ’ ( ( ~ : r ) r _ , + s r , ) = O .  

We put off a discussion of these conditions, which are important from the viewpoint 
of quantum theory, until future papers. 

In terms of currents j = , ( [ ) ,  

e , ( O  = -8j’,(tU*”(5) 

and, as a direct consequence of (33), we have 

We should stress that, in our approach, the current algebras (33) are the most 
fundamental objects, unlike Virasoro algebras (34), which are only the second most 
fundamental. The reason is that dynamical variables of the model are not only 
coefficients of the first quadratic form but also coefficients of the second quadratic 
form of the surface { X u } .  

5. Concluding remarks 

Equation (10) for matrix K E SL(2, R )  is a particular case of the general equation 

d + ( g - k g )  + xd-(g-’a+,) = 0 (35) 
for a two-dimensional chiral field g with an anomaly which was suggested by Novikov 
(1980). The linear representation for ( 3 5 )  was obtained by Volovich (1985), but our 
degenerate case for one system (20) can only be deduced from this general linear 
representation by means of the limiting procedure x +CO. 

The appearance of a current algebra as the foundation of Poisson structure of the 
main chiral field ( x  = 1) is well known (Takhtajan and Faddeev 1986). Theories with 
x = 0 and x = CO are similar (Witten 1984). 
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Of course, our preliminary (classical) considerations of the suggested string model 
do not help to solve any global problems in string theory. However, the appearance 
of such fundamental objects as a current algebra with central charges permits us to 
hope for some interesting results in the quantum case. 
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